

Massive MIMO

Parallel data transmission 12/12/2015

Communication Systems CDIO

LIPS Technical Report i

TECHNICAL DOCUMENTATION

Simon Sörman

Version 1.0

Status

Reviewed Mikael Olofsson 2015-12-11

Approved Mikael Olofsson 2015-12-11

Massive MIMO

Parallel data transmission 12/12/2015

Communication Systems CDIO

LIPS Technical Report ii

PROJECT IDENTITY
HT 2015

Linköping University, ISY

Participants of the group

Name Responsible Phone E-mail

Miguel Abadia Software Engineer 073 723 98 37 migab416@student.liu.se

Herman Molinder Project Manager 076 823 81 96 hermo276@student.liu.se

Simon Pålstam Software Engineer 076 803 17 06 simpa265@student.liu.se

Thiti Sookyoi Software Engineer 073 573 66 63 thiso311@student.liu.se

Simon Sörman
Responsible for the
documentation

070 954 78 41 simso657@student.liu.se

Customer: Mikael Olofsson, mikael.olofsson@liu.se, 013 – 28 13 43

Examiner: Danyo Danev, danyo.danev@liu.se, 013 – 28 13 35

Supervisor: Antonios Pitarokoilis, antonios.pitarokoilis@liu.se, 013 – 28 13 40

Massive MIMO

Parallel data transmission 12/12/2015

Communication Systems CDIO

LIPS Technical Report iii

Contents

1 Introduction ... 1

1.1 MIMO beamforming ... 1

1.2 Project .. 1

1.3 Definitions of terms .. 2

2 System overview ... 3

2.1 Main program ... 4

2.2 GUI ... 4

3 Modulator ... 7

3.1 External interface ... 7

3.2 Symbol Mapper .. 8

3.3 Detector .. 8

3.4 Precoder ... 8

3.5 Upconverter .. 9

3.6 Signal Demodulator .. 9

3.7 Functions .. 10

3.7.1 symbol_mapper_bpsk() ... 10

3.7.2 symbol_mapper_qpsk() ... 10

3.7.3 symbol_mapper_8psk() ... 11

3.7.4 mapper() .. 11

3.7.5 detector_bpsk() .. 11

3.7.6 detector_qpsk() .. 12

3.7.7 detector_8psk() .. 12

3.7.8 distances() ... 12

3.7.9 detector() .. 13

3.7.10 MRT()... 13

3.7.11 ZF() .. 14

3.7.12 upconverter() ... 14

3.7.13 uplink_demodulator() ... 15

3.7.14 downlink_demodulator() .. 15

4 Channel estimator ... 16

4.1 External Interface ... 16

4.2 Mathematical Description ... 16

4.3 Pilot Generator ... 17

4.4 Channel Estimator .. 17

4.5 Functions .. 18

Massive MIMO

Parallel data transmission 12/12/2015

Communication Systems CDIO

LIPS Technical Report iv

4.5.1 pilot_generator() ... 18

4.5.2 channel_estimator() ... 18

5 Channel coder ... 19

5.1 External Interface ... 19

5.2 Channel Encoder ... 19

5.3 Channel Decoder ... 19

5.4 Functions .. 20

5.4.1 Convo_1_2 () ... 20

5.4.2 Convo_2_3 () ... 20

5.4.3 Blockcode_7_4 () ... 21

5.4.4 Blockcode_15_11 () ... 21

5.4.5 TurboEncoder () ... 21

5.4.6 InterBlock () .. 22

5.4.7 Deconvo_1_2 () ... 22

5.4.8 Deconvo_2_3 () ... 22

5.4.9 DeBlockcode_7_4 () .. 23

5.4.10 DeBlockcode_15_11 () .. 23

5.4.11 TurboDecoder () .. 23

5.4.12 DeInterBlock () ... 24

5.4.13 channelCode() ... 24

5.4.14 channelDecode() ... 25

6 Miscellaneous ... 25

6.1 I/O HAL ... 25

6.1.1 IOobject() (Constructor) ... 25

6.1.2 setTerminalChannels() .. 26

6.1.3 setArrayChannels() .. 26

6.1.4 setTerminalSampleFreq() .. 26

6.1.5 setTerminalSendFreq() .. 27

6.1.6 setArraySampleFreq() ... 27

6.1.7 setArraySendFreq() ... 28

6.1.8 setArrayControlGroup() ... 28

6.1.9 sendTerminalToArray() .. 28

6.1.10 sendArrayToTerminal().. 29

6.2 IO simulation .. 29

6.2.1 init_channels() .. 29

6.2.2 Transactions .. 30

6.3 Sequence generators ... 31

6.3.1 bit_stream_generator() .. 31

Massive MIMO

Parallel data transmission 12/12/2015

Communication Systems CDIO

LIPS Technical Report v

6.3.2 preamble_generator() .. 31

6.4 Other functions ... 32

6.4.1 initIO() .. 32

6.4.2 checkForNonASCII() .. 33

6.4.3 stringToBits() .. 33

6.4.4 createMessages() .. 34

6.4.5 bitsToString() ... 34

6.4.6 readMessages() ... 34

6.4.7 multiPlot() ... 35

6.4.8 multiStem() ... 35

6.4.9 constellationPlot() .. 35

7 Results ... 36

7.1 System Performance .. 36

7.1.1 Pilot test ... 36

7.1.2 Synchronization test... 37

7.1.3 Precoder test .. 37

7.1.4 Modulator test .. 39

7.1.5 Channel coder test ... 40

7.1.6 Several terminals ... 42

8 Problems and limitations ... 43

8.1 Hardware .. 43

8.2 Software ... 44

9 Conclusions .. 44

9.1 System Performance .. 44

9.1.1 Bandwidth .. 44

9.1.2 Pilots .. 45

9.1.3 Synchronization ... 45

9.1.4 Precoder .. 45

9.1.5 Modulator ... 45

9.1.6 Channel coder .. 45

9.1.7 More terminals ... 45

10 References ... 47

11 Appendix .. 48

Massive MIMO

Parallel data transmission 12/12/2015

Communication Systems CDIO

LIPS Technical Report vi

Document history

Version Date Changes
Performed
by

Reviewed

0.1 2015-12-09 First draft
All project
members

All project
members

0.2 2015-12-11 Added information about channel coders MA HM

1.0 2015-12-12 Document approved

Massive MIMO

Parallel data transmission 12/12/2015

Communication Systems CDIO

LIPS Technical Report 1

1 INTRODUCTION

This document is the technical documentation of the project Parallel Data Transmission, made

as part of the course TSKS05 – Communication Systems CDIO at Linköping University

2015.

The aim is that this documentation should be extensive enough to enable an outside person,

with the same previous knowledge as the project group before the start of the project, to

continue development of the system. This documentation should be read together with the

User Manual to understand the complete usage of the product.

1.1 MIMO beamforming

Massive Multiple-Input Multiple-Output (MIMO) beamforming is the very foundation on

which this project is built upon and is utilizing. This is a theory of wireless communication

where the base station is equipped with a large amount of antennas (thus massive MIMO).

The main result of the theory is that with knowledge of the channels between the base station

and the terminals (users), the base station is able to “beamform” signals. The meaning of this

is that the signal can be aimed at a specific point in space, due to constructive interference of

waves. In classical systems, the space in one base station‟s cell and all therein positioned

terminals is considered as one single big channel that needs to be split in time and/or

frequency to enable communication with several users at the same (perceived) time. But by

directing different signals to terminals at different positions, one has effectively split the

single big channel in space rather than in time and/or frequency. This allows the base station

to actually communicate with several terminals at the same carrier frequency and at the exact

same time instant. The benefits of this is both potentially larger data rates for the users, and

lower energy consumption by the base station since it doesn‟t have to spread signal energy

everywhere, but only towards the users.

1.2 Project

This project is a continuation of the project in the same course that was conducted in 2014,

where hardware was produced together with some small amount of software that produced a

proof of concept of the massive MIMO technique. The hardware consists of A/D and D/A

converters, 16 units of dual loudspeakers and microphones (L/M-units), and some circuitry.

Thus the hardware does not use electromagnetic waves as means of communication as in

commercial systems, but uses soundwaves instead.

The aim of the project was to create a demonstrational system that is able to use 14 of these

L/M-units as the base station MIMO array, and the last 2 as terminals. The system should be

able to communicate data to both of these terminals at the same frequency and the same time

instant, and aim at maximizing throughput while keeping a reasonable bit error rate.

The final system is able to manage this communication at rates up to 300 bits per second and

user, while still maintaining a bit error rate of less than 1 percent.

Massive MIMO

Parallel data transmission 12/12/2015

Communication Systems CDIO

LIPS Technical Report 2

1.3 Definitions of terms

In table 1 below, abbreviations used throughout the document is listed and explained.

Table 1: Abbreviations used in the document

Word Definition

A/D Analog to Digital

BER Bit Error Rate

BPSK Binary Phase Shift Keying

D/A Digital to Analog

DF Decision Feedback

GUI Graphical User Interface

ISI Inter-Symbol Interference

L/M Loudspeaker/Microphone

LSE Least-Square Estimation

MIMO Multiple Input Multiple Output

MLE Maximum Likelihood Estimation

MMSE Minimum Mean Square Error

MRT Maximum-Ratio Transmission

QPSK Quadratic Phase Shift Keying

TDD Time Division Duplex

ZF Zero-Forcing

MIMO-array The array of L/M units that are used for beamforming

MIMO-transceiver One L/M unit in the MIMO-array

Massive MIMO

Parallel data transmission 12/12/2015

Communication Systems CDIO

LIPS Technical Report 3

2 SYSTEM OVERVIEW

The complete system consists of both hardware and software implementations. This project is

only focused on the software part of the complete system, as the hardware that is used was

created during the last year‟s project. The hardware consists of a computer, 8 L/M pairs, A/D

and D/A converters and a distribution box, as described in last year‟s project documentation

(Stenmark, 2014a). The software consists of a large amount of files almost exclusively

containing matlab code; these files are listed in appendix A and are essential for the system to

work properly. The software has been divided into three sub-systems, the channel estimator,

the modulator and the channel coder. A simple overview of the sub-systems is shown in

Figure 1.

Figure 1: Overview of the sub-systems

The interaction of the various processing blocks for the communication is shown in Figure 2:

Figure 2: Overview of the software system

In the figures, the blocks are color-coded. Red blocks are part of the channel coder, the blue

ones are the modulator and the green blocks are the channel estimator. Yellow blocks are not

part of a sub-system.

As shown in Figure 2 the software system functions as follows. The channel encoder is

presented with two bit streams that in the end are transmitted from the MIMO array to the two

terminals. The coder encodes these bit streams and output two coded bit streams. The symbol

mapper then maps these bit-streams onto appropriate baseband-signals. The channel estimator

Massive MIMO

Parallel data transmission 12/12/2015

Communication Systems CDIO

LIPS Technical Report 4

estimates the channels. In order to do this each terminal sends one pilot signal to the array.

The received signals during pilot transmission are passed on to the channel estimator and

processed to get channel estimates. The precoder uses these estimates to perform prefiltering

of the baseband signals. These signals are modulated by the upconverter to be the real valued

signals that are transmitted. The signal demodulator does the reverse operation; it takes the

real sampled signals and produces the complex baseband representation. The detector

converts the baseband signals to fit the channel decoder. The channel decoder will use this

information to estimate the most likely information bit sequences.

The bit stream generator‟s only task is to provide streams of bits that the system should use.

This can be random bits or representations of text messages that the user can specify. The I/O-

block is responsible for controlling the hardware, making sure that the

upconverter/demodulator has an easy to use interface to the L/M-pairs.

2.1 Main program

The main program of the system is a script called massive_MIMO_transmission.m. This script

cannot be used without setting a set of parameters beforehand. These parameters are set either

by using the graphical interface for the system (see section 2.2) or by running the script

NO_GUI_transmission.m. The main script can be divided into several different phases. The

first phase sets a few constant parameters that have been decided either by testing or simply

because of the limits of the system. Next phase is the initialization; this part initializes the

hardware and creates the bit sequences that will be transmitted. The bit sequences are either

randomized or created from an input text string. After initialization comes the coding, this

phase performs channel coding, interleaving, and symbol mapping of the bit sequences.

The program is now ready to start transmitting the data. The transmission is divided into

frames of maximum two seconds, thus will the transmission be divided into several frames if

it takes more than two seconds to transmit. In each frame the following tasks are performed:

send pilot signals from the terminals to the MIMO array, estimate the channel impulse

responses, precode the information signals, send information signals from the MIMO array to

the terminals, demodulate the signals received at the terminals.

The decoding phase starts when all frames have been transmitted and received; this part

performs inverse interleaving and channel decoding, and eventually decodes a text message

from the received bit sequence. The last part is the statistics phase where various statistics

from the transmission are calculated.

2.2 GUI

The GUI is created with Matlab built in functionality for graphical interfaces. When using this

application Matlab produces a fig-file (GUI.fig) that specifies the design of the GUI, and an

m-file (GUI.m) consisting of auto generated code. The m-file has later been modified to

perform security checks and set all parameters for the massive_MIMO_transmission.m script,

as well as run the script or plot results when the corresponding icon is clicked. The basic

structure of the m-file is that all objects in the GUI have a callback-function that is called each

time the object is changed. The communication between the GUI objects and the callback-

functions is done via handle objects stored in a structure called handles. A picture of the GUI

is presented in Figure 3.

Massive MIMO

Parallel data transmission 12/12/2015

Communication Systems CDIO

LIPS Technical Report 5

Figure 3: Graphical User Interface

The upper left box of the GUI displays the input parameters for the system, descriptions and

limitations for all these input parameters are displayed in Table 2.

Massive MIMO

Parallel data transmission 12/12/2015

Communication Systems CDIO

LIPS Technical Report 6

Table 2: Descriptions and limits of input parameters

Input Description Min

value

Max value

Number of

information bits

Input the number of information bits (integer).
1 -

Symbol rate Input the symbol rate in unit symbols/sec (integer).
12 (

)

Carrier frequency Input the carrier frequency in unit Hz (integer).
1 (

)

Number of pilot

symbols per

terminal

Input the number of pilot symbols per terminal

(integer). 1

Encoding

Algorithm

Choose the error correcting coding algorithm from a

list.
- -

Interleaving Choose to use interleaving. - -

Interleaving depth

(Bits)

Input interleaving depth if interleaving is used.
- -

Modulator Type Choose the modulator type from a list. - -

Precoder Type Choose precoder type from a list. - -

Virtual Channel Choose to use a virtual channel - -

Virtual Channel

Noise Variance

Input the variance of the AWGN that is applied to all

simulated channels if virtual channel is used.
0 -

Use text messages Choose to transmit text messages. - -

Text message 1 Input a US-ASCII text message for the first terminal.

The text message must contain at least one printable

US-ASCII character.

- -

Text message 2 Input a US-ASCII text message for the second

terminal. The text message must contain at least one

printable US-ASCII character.

- -

The lower box defines which L/Ms are used as terminals and which L/Ms are used in the

MIMO array. It is possible to start a transmission by clicking the icon start transmission. The

Massive MIMO

Parallel data transmission 12/12/2015

Communication Systems CDIO

LIPS Technical Report 7

upper right box displays statistical data from the latest transmission. There are five different

types of plots that can be produced by clicking on the corresponding button in the GUI. The

plots that are available are:

 Constellation diagram – Plots the received symbols and the constellation points in the

complex plane.

 Error plot – Creates a discrete time plot that displays all bit errors received by each

terminal.

 Eye diagram – Crates an eye diagram for the received symbols at each terminal.

 Time plot – Plots the received signal in the time-domain. It should be noted that the

time axis not corresponds to the real time since the time for pilot transmission and

coding/decoding is not included.

 FFT plot – Plots the received signal for each terminal in the frequency-domain.

For more information about how to use the system please read the user manual.

3 MODULATOR

The Modulator sub-system has two different main tasks. The first is to create signals to be

transmitted by the MIMO-transceivers. The second is to demodulate signals received by the

two terminals. The MIMO signals are created by mapping the bit streams to a chosen symbol

constellation and precode the symbols into several different signals that are to be transmitted

by the MIMO-transceivers.

3.1 External interface

The input to the modulator sub-system consists of bit streams from the channel encoder and

channel impulse responses from the channel estimator. The MIMO signals are sent to the D/A

card via the I/O drivers. Sub-system also receives signals from the I/O. These signals are

either sent immediately to the channel estimator as a baseband signal or to the channel

decoder as detected bit streams. A block scheme of the modulator sub-system is presented in

Figure 4.

Figure 4: A simple block scheme of the modulator sub-system

Massive MIMO

Parallel data transmission 12/12/2015

Communication Systems CDIO

LIPS Technical Report 8

3.2 Symbol Mapper

The symbol mapper sub system maps the bit streams onto a chosen symbol constellation to

create a baseband. The constellations available are: BPSK, QPSK and 8PSK. To accomplish

this there is one mapping function for each constellation. There is also an overhead function

that calls the other functions depending on the given input.

3.3 Detector

The detector sub system detects bits from a received baseband signal. The detection is

performed with hard decision and the constellations available are: BPSK, QPSK and 8PSK.

Just as for the symbol mapper there is one function for each constellation as well as an

overhead function.

3.4 Precoder

The precoder filters the baseband signals to create one precoded signal for each transceiver in

the MIMO array. The filtering consists of different scaling and phase shifting of the signals.

In practice this comes down to a matrix multiplication as in equation 1.

 √ (1)

Here is the filter matrix, is a matrix where each row contains the precoded baseband

signal to be sent from one MIMO transceiver, is a matrix where each row contains a

baseband signal intended for a terminal, this is visualized in equation 2. Finally, is a

normalization constant defined by equation 3.

 (

) (2)

Here is the :th symbol to the :th terminal.

 { }
 (3)

Note that this is a theoretical expression, as it requires the knowledge of the channel statistics.

Since the statistics is not known the expectation is estimated to be that of equation 4.

 ̂

 (4)

Two different kinds of filters can be used as , these are: MRT and ZF.

The MRT algorithm only maximizes the signal gain at the intended user and is close to

optimal in noise-limited systems, where the inter-user interference is negligible compared to

Massive MIMO

Parallel data transmission 12/12/2015

Communication Systems CDIO

LIPS Technical Report 9

the noise. The MRT filter is defined by equation 5 where is the channel matrix defined in

section 4.2.

 (5)

It is worth mentioning that this method does not perform well if there is high co-channel

interference.

The ZF filter only compensates for co-channel interference and neglects thermal noise. The

filter is defined by equation 6.

 - (6)

These linear precoders have very low complexity but give a sufficient result for this system.

3.5 Upconverter

The upconverter is responsible for transforming the complex baseband signals into passband

signals with a chosen carrier frequency. These signals are then forwarded to the I/O for D/A

conversion.

3.6 Signal Demodulator

The demodulation starts by transforming the received signal from passband to baseband, this

transformation creates a copy of the signal at , this copy along with high frequency noise is

removed from the baseband signal by low pass filtering it. The filter used is an 8th order

digital Butterworth low-pass filter with cut-off frequency .

Next step is to find the time delay in the received signal; this is done by correlate the received

signals with the known part of the transmitted signals. In the uplink case this refers to the non-

zero part of the pilot signals and in the downlink case this refers to predefined synchronisation

symbols added at the beginning of the information signals. Equation 7 gives a mathematical

expression for the estimation of the time-delay for a single signal.

 (7)

Here is the received signal at receiver ; is the known pilots (or synchronisation-symbols

in the downlink), and denotes convolution.

The phase-shift of the received signals compared to the transmitted signals are also estimated

to complete the synchronisation, this is done as in equation 8.

 ̂ (8)

Here and are the same as in equation 7 and denotes the scalar product. The received

signal is then phase-shifted with ̂ to get the same phase as in the transmitted signal.

Massive MIMO

Parallel data transmission 12/12/2015

Communication Systems CDIO

LIPS Technical Report 10

The final part of the signal demodulation is to down sample the signal to symbols, taking the

mean value of the samples in each symbol interval does this. A guard interval of 1/2 the

symbol length is implemented to make the system more robust against small errors in the

synchronisation and to minimize the errors produced by symbol alternation. The sampling is

done in the centre of the symbol interval, thus are all symbol intervals split into 1/4 pre-guard,

1/2 symbol sampling, and 1/4 post-guard.

3.7 Functions

This section describes all functions that belong to the modulator sub-system.

3.7.1 symbol_mapper_bpsk()

This function assigns a complex symbol for each bit in the input vector according to a BPSK

constellation.

Input:

bits – Matrix where each row contains the coded bits to be sent to each terminal.

Output:

symbols – Matrix where each row contains the complex symbols to be sent to each terminal.

3.7.2 symbol_mapper_qpsk()

This function assigns a complex symbol for each pair of bits in the input vector according to a

QPSK constellation. The mapping is Gray coded to minimize the number of bit errors for

each symbol error. This function adds a zero at the end of the input vector if the length of the

vector is odd. This is to make sure that the last symbol is complete.

Input:

bits – Matrix where each row contains the coded bits to be sent to each terminal.

Output:

symbols – Matrix where each row contains the complex symbols to be sent to each terminal.

Massive MIMO

Parallel data transmission 12/12/2015

Communication Systems CDIO

LIPS Technical Report 11

3.7.3 symbol_mapper_8psk()

This function assigns a complex symbol for each triplet of bits in the input vector according to

an 8PSK constellation. The mapping is Gray coded to minimize the number of bit errors for

each symbol error. This function adds zeros at the end of the input vector if the length of the

vector is not divisible by 3. This is to make sure that the last symbol is complete.

Input:

bits – Matrix where each row contains the bits to be sent to each terminal.

Output:

symbols – Matrix where each row contains the complex symbols to be sent to each terminal.

3.7.4 mapper()

This is an overhead function that calls one of the symbol_mapper_*() functions depending on

the input. It also calculates the number of added bits.

Input:

bits – Matrix containing bits for each terminal.

constellation – String that specifies the constellation that will be used. The inputs available

are: 'BPSK', 'QPSK' and '8PSK'.

Output:

complexSymbols – Matrix where each row consists of symbols for each terminal.

extraMappingBits – The number of added bits at the end.

3.7.5 detector_bpsk()

This function detects the most probable bit for each complex symbol according to a BPSK

constellation.

Input:

symbols – Matrix where the rows consists of complex symbols for each terminal

Output:

bits – Matrix where the rows consists of bits for each terminal.

Massive MIMO

Parallel data transmission 12/12/2015

Communication Systems CDIO

LIPS Technical Report 12

3.7.6 detector_qpsk()

This function detects the most probable bit pair for each complex symbol according to a

QPSK constellation. The detection assumes that Gray coding were used for the mapping.

Input:

symbols – Matrix where the rows consists of complex symbols for each terminal

Output:

bits – Matrix where the rows consists of bits for each terminal.

3.7.7 detector_8psk()

This function detects the most probable bit triplet for each complex symbol according to an

8PSK constellation. The detection assumes that Gray coding were used for the mapping.

Input:

symbols – Matrix where the rows consists of complex symbols for each terminal

Output:

bits – Matrix where the rows consists of bits for each terminal.

3.7.8 distances()

This function calculates the euclidean distance between the received symbols in one terminal

and every complex symbol of the constellation. This function is only used by the

detector_8psk() function.

Input:

s – Vector containing received complex symbols for one terminal.

constellation – Compared constellation

Output:

dist – Distance between the corresponding vector and the concrete constellation.

Massive MIMO

Parallel data transmission 12/12/2015

Communication Systems CDIO

LIPS Technical Report 13

3.7.9 detector()

This is an overhead function that calls one of the detector_*() functions depending on the

input.

Input:

complexSymbols – Matrix where the rows consists of complex symbols for each terminal.

constellation – String that specifies the constellation that will be used. The choices available

are: 'BPSK', 'QPSK' and '8PSK'.

extraMappingBits – The number of bits added by the mapper at the end to get a complete

symbol.

Output:

bits – Matrix where each row consists of bits for each terminal.

3.7.10 MRT()

This function precodes complex symbols with a MRT filter to enable a massive MIMO

transmission. It is possible to reuse and update the normalization constant if the function is

called several times. This might give a better estimate of the expression in equation 3, section

3.4.

Input:

complexSymbols – Matrix where the rows consists of complex symbols for each terminal

channelEstimations – Matrix containing all the channel estimations calculated by the channel

estimator.

normConst – Normalisation constant that will be updated each time the function is used, it is

denoted alpha in the mathematical description.

iterNmbr – The number of times that normConst has been updated, thus the number of times

that the function has been used without a reset.

Output:

precodedSymbols – Matrix containing the precoded symbols for each transmitter in the

MIMO array.

normConst – The updated normConst.

iterNmbr – The updated iterNmbr.

Massive MIMO

Parallel data transmission 12/12/2015

Communication Systems CDIO

LIPS Technical Report 14

3.7.11 ZF()

This function precodes complex symbols with a ZF filter to enable a massive MIMO

transmission. It is possible to reuse and update the normalization constant if the function is

called several times. This might give a better estimate of the expression in equation 3, section

3.4.

Input:

complexSymbols – Matrix where the rows consists of complex symbols for each terminal

channelEstimations – Matrix containing all the channel estimations calculated by the channel

estimator.

normConst – Normalisation constant that will be updated each time the function is used, it is

denoted alpha in the mathematical description.

iterNmbr – The number of times that normConst has been updated, thus the number of times

that the function has been used without a reset.

Output:

precodedSymbols – Matrix containing the precoded symbols for each transmitter in the

MIMO array.

normConst – The updated normConst.

iterNmbr – The updated iterNmbr.

3.7.12 upconverter()

This function takes complex-baseband signals and converts them into real-valued passband

signals specified by the input.

Input:

fs – The sampling frequency that should be used (Hz).

fc – The carrier frequency to convert into (Hz).

R – The symbol rate that should be used (symbols/sec).

symbols – A matrix where each row contains a complex-baseband signal to convert.

Output:

signals – A matrix where each row contains a converted passband signal.

Massive MIMO

Parallel data transmission 12/12/2015

Communication Systems CDIO

LIPS Technical Report 15

3.7.13 uplink_demodulator()

This function performs several operations on the received uplink/pilot signals to retrieve the

received symbols. The operations are: Transformation from passband to baseband, low pass

filtering, synchronisation, phase estimation/modification, and finally down sampling.

Input:

fs – Sampling frequency [integer].

fc – Carrier frequency [integer].

R – Symbol rate [integer].

r – Matrix where each row contains the samples of the received signal for each transceiver.

p – Matrix where each row contains the pilot symbols for each terminal.

Nguard – Number of guard symbols before first pilot symbol.

Output:

symbols – Matrix where each row contains the received symbols for each transceiver.

3.7.14 downlink_demodulator()

This function performs several operations on the received downlink signals to retrieve the

received symbols. The operations are: Transformation from passband to baseband, low pass

filtering, synchronisation, phase estimation/modification, and finally down sampling.

Input:

fs – Sampling frequency [integer]

fc – Carrier frequency [integer]

R – Symbol rate [integer]

r – Matrix where each row contains the samples of the received signal for each terminal.

p – Matrix where each row contains an orthogonal synchronisation vector for each terminal.

Nguard - Number of guard symbols before first pilot symbol

Nsym - The number of symbols that are supposed to be demodulated, this number includes the

synchronisation symbols in p.

Output:

symbols – Matrix where each row contains the demodulated symbols for each transceiver.

Massive MIMO

Parallel data transmission 12/12/2015

Communication Systems CDIO

LIPS Technical Report 16

4 CHANNEL ESTIMATOR

The channel estimator estimates the channel impulse response between each MIMO

transceiver and terminal. A TDD protocol is used where the terminals initially transmit pilots

and subsequently the MIMO array transmits data to the terminals. At the beginning of a time

frame the terminals transmit orthogonal pilots, which are received by the MIMO transceivers.

By processing the received pilots the channel estimator is able to calculate and output channel

estimates to the modulator. The estimation procedure is done regularly to adapt to changes in

the channel.

4.1 External Interface

The Pilot Generator outputs pilot sequences to the upconverter. The Channel Estimator

receives channel responses from the channels between each terminal and MIMO transceiver.

The number of pilot sequences is equal to the number of terminals. The number of estimates

is equal to the number of terminals multiplied by the number of MIMO transceivers. An

example overview of the external interface of the channel estimator is shown in Figure 5.

Figure 5: External interface of the channel estimator using 2 terminals and 14 MIMO transceivers

4.2 Mathematical Description

Let:

 (

) be the pilot sequence for the :th terminal, where is the number

of pilot symbols and is the number of terminals.

 (

) be the pilot matrix, where is the number of terminals.

Massive MIMO

Parallel data transmission 12/12/2015

Communication Systems CDIO

LIPS Technical Report 17

 (

) be the channel matrix, where is the channel impulse response

between terminal and transceiver , is the number of array elements and is the number

of terminals.

 be a complex white Gaussian noise matrix.

Then the received matrix can be modeled as follows:

4.3 Pilot Generator

Let and be the pilot sequence for terminal and , respectively. Then must

be fulfilled for any to ensure that the pilot sequences are orthogonal. This is achieved by

letting:

(

 ()

)

,

(

 ()

)

 and

(

 ()

)

The non-zero elements in the pilot sequences is created by letting , where is

a continuous uniform distributed stochastic variable with boundaries and is the

imaginary unit. Therefore becomes a random point on the complex plane unit circle.

The randomness is used to distinguish phase and delay differences between pilot sequences by

the demodulator. The stochastic distribution is created with the built in pseudo random

functions in Matlab.

4.4 Channel Estimator

The channel estimates will be estimates of the channel impulse response within the coherence

time interval and coherence bandwidth. If the channel can be assumed to be flat fading, the

channel impulse response can be represented as a complex number. The LSE algorithm

provides an MLE of according to equation 9.

 (9)

Massive MIMO

Parallel data transmission 12/12/2015

Communication Systems CDIO

LIPS Technical Report 18

4.5 Functions

This section describes all functions that belong to the channel estimator sub-system.

4.5.1 pilot_generator()

This function returns a matrix of orthogonal pilot sequences. Each row of the matrix contains

a pilot sequence.

Input:

Nterm – Number of pilot sequences/terminals

Nsym_per_term – Number of pilot symbols per terminal

Output:

p – A matrix with Nterm rows and Nsym_per_term columns, where each row contains the

pilot sequence for a terminal.

4.5.2 channel_estimator()

This function returns a matrix of the estimated channel impulse responses. The channel

impulse responses are estimated with the least squares estimation algorithm. H_lse(i,j)

corresponds to the estimated impulse response between MIMO transceiver i and terminal j.

Input:

P – A matrix with “number of terminals” rows and “number of pilot symbols” columns,

where each row contains the pilot sequence for a terminal.

Y – A matrix with “number of MIMO tranceivers” rows and “number of pilot symbols”

columns, containing the received pilot sequences of each MIMO transceiver. Y(i,j)

corresponds to received symbol j of transceiver i.

Output:

H_lse – A matrix with “number of MIMO transceivers” rows and “number of terminals”

columns, containing the estimated channel impulse responses. H_lse(i,j) corresponds to the

estimated impulse response between MIMO transceiver i and terminal j.

Massive MIMO

Parallel data transmission 12/12/2015

Communication Systems CDIO

LIPS Technical Report 19

5 CHANNEL CODER

To be able to use the system for demonstration of real data transmission, channel coding is

used to try to minimize errors in the information bits being transmitted.

The channel coder is designed to improve the system, meaning that compared to the system

without channel coding it preserves the information bit rate while decreasing the information

BER. An interleaver has also been implemented to enhance the performance of the channel

coding. The channel coder sub-system takes several information bit streams as input, and

outputs the same number of coded bit

5.1 External Interface

Figure 6 below shows a simple overview of how this sub-system functions in the complete

system. The channel coder is able to do both encoding and decoding. The interface of this is

two functions, one for encoding a number of sequences, and one for decoding a number of

sequences. The outputs of the functions are the decoded/coded sequences.

Figure 6: A block scheme of the channel encoder

5.2 Channel Encoder

The channel encoder encodes the information bits choosing between a convolutional code,

block code and turbo code. The implementation of the channel encoder is performed using the

existing functions in the Communication System Toolbox in Matlab.

5.3 Channel Decoder

The channel decoder decodes the received code words using the Viterbi algorithm, a block

decoder or a turbo decoder depending on the channel encoder chosen previously. The

implementation of the channel decoder is performed using the existing functions in the

Communication System Toolbox in Matlab.

Massive MIMO

Parallel data transmission 12/12/2015

Communication Systems CDIO

LIPS Technical Report 20

5.4 Functions

This section, describes all functions related to the channel coder. These functions are the basis

for all channel coding methods that the system is able to use.

5.4.1 Convo_1_2 ()

This function channel codes the information using a convolutional encoder with a code rate of

1/2. This encoding gives an error correction capability of 2 bits in a block of 6 bits, therefore,

its free distance is 5 bits. The generator polynomials are G1 = (1, 0, 1) and G2 = (1, 1, 1).

Input:

bits - Matrix containing information bits for each terminal.

Output:

codedBits - Matrix containing coded bits for each terminal.

5.4.2 Convo_2_3 ()

This function codes the information bits to minimize error by using ta convolutional encoder

with a code rate of 2/3. This encoding has a free distance of 9 bits. The generator polynomials

are G1, 1 = (0, 0, 1, 0, 0, 0, 0, 1), G1, 2 = (0, 1, 1, 1, 0, 1, 0, 1), G1, 3 = (1, 0, 0, 0, 0, 1, 0, 1), G2, 1

= (0, 1, 1, 1, 1, 0, 0, 0), G2, 2 = (0, 0, 0, 0, 1, 0, 1, 1) and G2, 3 = (0, 1, 1, 0, 1, 0, 1, 0).

This function will zero-pad the input before performing any encoding if the length of input is

odd. This is due to the fact that convolutional encoding with rate 2/3 demands an input with

even length. The output padding will notify if any padding has occurred to make it possible

for the decoder to remove the redundant bits.

Input:

bits - Matrix containing information bits for each terminal.

Output:

codedBits - Matrix containing coded bits for each terminal.

padding - Number of zero-bits that were used to pad each message.

Massive MIMO

Parallel data transmission 12/12/2015

Communication Systems CDIO

LIPS Technical Report 21

5.4.3 Blockcode_7_4 ()

This function codes the information bits using a Hamming (7, 4) linear block encoder. The

minimum distance of this coder is 3 bits.

Input:

bits - Matrix where each row contains information bits for each terminal.

Output:

codedBits - Matrix where each row contains coded bits for each terminal.

5.4.4 Blockcode_15_11 ()

This function codes the information bits using a Hamming (15, 11) linear block encoder. This

coder has a minimum distance of 3 bits.

Input:

bits - Matrix where each row contains information bits for each terminal.

Output:

codedBits - Matrix where each row contains coded bits for each terminal.

5.4.5 TurboEncoder ()

This function codes the information bits using turbo coding with a code rate of 1/3 .The turbo

encoder adds a new output, this is a vector that contains the indices used for the turbo encoder

to make its interleaving and that the decoder has to know when it make the de-interleaving.

Input:

data - Matrix where each row contains information bits for each terminal.

Output:

encodSignal - Matrix where each row contains coded bits for each terminal.

intrlvrIndices - Interleaver parameters that the turbo decoder has to know.

Massive MIMO

Parallel data transmission 12/12/2015

Communication Systems CDIO

LIPS Technical Report 22

5.4.6 InterBlock ()

This function performs interleaving on bit streams in order to make the channel coding more

robust to burst errors. The interleaving is performed by picking every n:th bit in the input and

wrap around the input matrix until all input bits have been placed in the output matrix, n is

called the interleaving depth.

Similarly, the permutation vector that indicates the position of every information bit in the

interleaved stream (the same for all terminals) is given as output.

Input:

Data - Matrix where each row contains information bits for each terminal.

n - Interleaving depth

Output:

intData - Matrix where each row contains coded bits for each terminal.

Perm - A vector that indicates the positions of the bits in the interleaved stream. It is needed

in the de-interleaving.

5.4.7 Deconvo_1_2 ()

This function decodes bit streams that have been encoded with the function Convo_1_2(). It

uses the Viterbi algorithm in the decoding.

Input:

codedBits - Matrix where each row contains coded information bits for each terminal.

Output:

bits - Matrix where each row contains decoded information bits for each terminal.

5.4.8 Deconvo_2_3 ()

This function decodes bit streams that have been encoded by the function Convo_2_3(). It

uses the Viterbi algorithm in the decoding, and all zeros added by the encoder at the end of

message are removed.

Input:

codedBits - Matrix where each row contains coded information bits for each terminal.

padding - Number of zero-bits that were used to pad each message in the encoder.

Output:

bits - Matrix where each row contains decoded information bits for each terminal.

Massive MIMO

Parallel data transmission 12/12/2015

Communication Systems CDIO

LIPS Technical Report 23

5.4.9 DeBlockcode_7_4 ()

This function decodes bit streams encoded by the function Blockcode_7_4().

Input:

codedBits - Matrix where each row contains coded information bits for each terminal.

Output:

bits - Matrix where each row contains decoded information bits for each terminal.

5.4.10 DeBlockcode_15_11 ()

This function decodes bit streams encoded by the function Blockcode_15_11().

Input:

codedBits - Matrix where each row contains coded information bits for each terminal.

Output:

bits - Matrix where each row contains decoded information bits for each terminal.

5.4.11 TurboDecoder ()

This function decodes bit streams encoded by the function TurboEncoder().

Input:

data - Matrix where each row contains coded information bits for each terminal.

intrlvrIndices - Interleaver parameters outputted from the TurboEncoder() function, when the

data was encoded.

Output:

decSignal - Matrix where each row contains decoded information bits for each terminal.

Massive MIMO

Parallel data transmission 12/12/2015

Communication Systems CDIO

LIPS Technical Report 24

5.4.12 DeInterBlock ()

This function inverse the interleaving performed by the function InterBlock().

Input:

intData - Matrix containing the interleaved information bits.

Perm - Permutation used by the interleaver. This is acquired from the InterBlock() function.

Output:

Data - Matrix containing the de-interleaved information bits.

5.4.13 channelCode()

Proxy function that will take bit streams and code them with the appropriate channel coding

function chosen from the functions in sections 5.4.1 to 5.4.5.

Input:

bits – A matrix of the bits to be coded, each row is treated as an independent stream.

codeType – String which chooses the channel coder, the available options are: „block code

(7,4)‟, „block code (15,11)‟, „convolutional code 1/2‟, „convolutional code 2/3‟, „turbo code‟

and „no channel code‟.

Output:

codedBits – A matrix of coded bit streams, each row is one of the streams.

extraBits – Not used.

dim – Not used.

intrlvrIndices – The interleaving indices that are used by the turbo coder (if chosen).

padding – The amount of padding bits used on each stream.

Massive MIMO

Parallel data transmission 12/12/2015

Communication Systems CDIO

LIPS Technical Report 25

5.4.14 channelDecode()

Proxy function that will take coded bit streams (that might contain errors) and decode them

with the appropriate channel decoding function chosen from the functions in sections 5.4.7 to

5.4.11.

Input:

codedBits – A matrix of coded bit streams, each row is one of the streams.

extraBits – Not used.

dim – Not used.

intrlvrIndices – The interleaving indices that are used by the turbo coder (if chosen).

noiseVar – Not used.

padding – The amount of padding bits used on each stream.

codeType – String which tells which coding was used, the available options are: „block code

(7,4)‟, „block code (15,11)‟, „convolutional code 1/2‟, „convolutional code 2/3‟, „turbo code‟

and „no channel code‟.

Output:

decodedBits – The decoded bit streams, each row is one stream.

6 MISCELLANEOUS

This chapter presents the parts of the software that doesn‟t fit into one of the sub-systems, but

are considered as other utilities.

6.1 I/O HAL

To be able to work with the hardware in an easily manageable manner, a Hardware

Abstraction Layer is created. This abstraction layer provides an interface to make so called

transactions. A transaction is simply a transmission that is sent from either the MIMO-array or

the terminals, and that is recorded on the other end. The interface also provides means of

setting which L/M-modules that are part of MIMO array and terminals respectively, setting

sample- and transmission frequency on both ends individually and specifying which control

group of the hardware that is used as MIMO array.

The interface is implemented with a Matlab class called IOobject. An instance of this object

provides the functions described in sections 6.1.1 to 6.1.10.

6.1.1 IOobject() (Constructor)

To obtain an instance of the IOobject class, one should call the constructor of the class. This

should be provided with the A/D and D/A card adaptors and hardware identifiers, which

makes it possible to switch to another set of A/D and D/A cards without having to change this

code. The IOobject is inherited from Matlabs class handle, which means that the constructor

returns a Matlab-handle of the created instance.

Massive MIMO

Parallel data transmission 12/12/2015

Communication Systems CDIO

LIPS Technical Report 26

Input:

ad_adaptor – The adaptor of the A/D card, in our case „contec‟.

ad_id – The hardware ID of the A/D card, in our case „AD12-64‟.

da_adaptor – The adaptor of the D/A card, in our case „contec‟.

da_id – The hardware ID of the D/A card, in our case „AIO001‟.

Output:

obj – Handle of the created IOobject instance.

6.1.2 setTerminalChannels()

This function is used to set which channels are used for the terminals. The number of channels

specifies the amount of terminals. It is very important to note that duplicate channel numbers

will be removed, and that channel numbers will be sorted in ascending order.

Input:

channels – Array of the channel numbers that is going to be used for the terminals.

6.1.3 setArrayChannels()

This function works exactly as setTerminalChannels(), but sets the channel used for the

MIMO-array elements.

Input:

channels – Array of the channel numbers that is going to be used for the terminals.

6.1.4 setTerminalSampleFreq()

Sets what sampling frequency to use when recording on the terminals. Due to hardware

restrictions of the current A/D card, there is a maximum limit of

which arises from that when the A/D card is sampling, it samples from all channels up to and

including the highest channel number that one wants to sample from (e.g. if one wants to only

sample channel 4, then the A/D card has to sample on channels 0, 1, 2, 3 and 4). Together

with the fact that the A/D card has a sampling frequency of that is split on all

sampled channels, this gives the requirement above.

It is not certain that all choices of frequencies are compatible with the hardware; therefore this

function returns the value that will actually be used.

Massive MIMO

Parallel data transmission 12/12/2015

Communication Systems CDIO

LIPS Technical Report 27

Input:

freq – The sampling frequency that the user wants to use for the terminals.

Output:

sample_freq – The sampling frequency that will actually be used for the terminals.

6.1.5 setTerminalSendFreq()

This sets what sending frequency to use when transmitting from the terminals. Due to

hardware restrictions of the current D/A card, there is a maximum limit of

which comes from that the D/A card has the exact same restrictions as the A/D card described

in section 6.1.4.

Input:

freq – The sending frequency that the user wants to use for the terminals.

Output:

send_freq – The sending frequency that will actually be used for the terminals.

6.1.6 setArraySampleFreq()

Does the same as setTerminalSampleFreq() but for the MIMO array, with the transformed

requirement of

Input:

freq – The sampling frequency that the user wants to use for the MIMO array.

Output:

sample_freq – The sampling frequency that will actually be used for the MIMO array.

Massive MIMO

Parallel data transmission 12/12/2015

Communication Systems CDIO

LIPS Technical Report 28

6.1.7 setArraySendFreq()

Does the same as setTerminalSendFreq() but for the MIMO array, with the transformed

requirement of

Input:

freq – The sending frequency that the user wants to use for the MIMO array.

Output:

send_freq – The sending frequency that will actually be used for the MIMO array.

6.1.8 setArrayControlGroup()

This sets which control group that is used as MIMO array (either 1 or 2). This is a property of

the hardware, and some logical control signals must be used during transactions to ensure

proper functioning.

Input:

group – Which control group is used as MIMO array (1 or 2).

6.1.9 sendTerminalToArray()

This function is used to perform a transaction from the terminal to the MIMO array. It is

important to ensure that one signal per terminal is provided for transmission. This function

then takes care of sending control signals to the hardware, it makes sure to give the correctly

formatted data to the A/D card and it also starts sampling of the D/A card.

It should be noted that signals that are to be transmitted are scaled with a constant scaling that

is independent for each channel. This is done due to the fact that different speakers have

different transmission characteristics.

These characteristics have been measured for all speakers by sending a pure sine of frequency

1600 Hz on each speaker in turn, and recording this with the same device. The recorded signal

amplitude was then used to create a scaling of each transmission channel that produces the

same amplitude out of each speaker for the same signal.

The recorded signals are likewise scaled with a constant scaling since the microphones also

have different characteristics. The measurements were made in the same manner; a device

was used to transmit a pure sine to each microphone in turn (with the exact same setup for

each). The recorded amplitudes were used to create a scaling that should produce the same

recorded amplitude for each microphone, if they receive the exact same signal.

Another important thing to note is that the D/A and A/D card has limited amount of memory,

therefore this function emits a warning whenever there is a risk of exceeding this limit. To be

entirely certain that this will not happen, one should never transmit signals that are longer

than 2 seconds (if using a sending frequency of).

Massive MIMO

Parallel data transmission 12/12/2015

Communication Systems CDIO

LIPS Technical Report 29

Lastly, it is also important to have set all parameters (with the functions described in sections

6.1.1 through 6.1.8) before starting a transaction.

Input:

input_signals – Matrix where each row is a signal to be sent from a terminal; the first row will

be sent on the first terminal (in ascending number order) etc.

samples – The number of samples to take on each MIMO array element. This parameter is

optional and will correspond to the transmission time if left out.

Output:

output_signals – Matrix where each row is a signal recorded on one MIMO array element; the

first row is recorded on the first array element (in ascending order) etc.

6.1.10 sendArrayToTerminal()

This function is used to perform a transaction from the MIMO array to the terminals. It works

exactly the same as sendTerminalToArray(), with the same scaling and limitations.

Input:

input_signals – Matrix where each row is a signal to be sent from an array element; the first

row will be sent on the first array element (in ascending number order) etc.

samples – The number of samples to take on each terminal. This parameter is optional and

will correspond to the transmission time if left out.

Output:

output_signals – Matrix where each row is a signal recorded on one terminal; the first row is

recorded on the first terminal (in ascending order) etc.

6.2 IO simulation

Since the hardware had to be shared between two project groups during the development

phase, and because it was noticed that an easy way of testing the software without the actual

system would be beneficial, it was decided that an IO simulation should be created. This

simulation should function in the exact same way as the regular IO HAL, but it should not use

the actual hardware, but a channel model instead.

The result was a new class named IOobject_sim, which provides the same functions as the

IOobject with one addition.

6.2.1 init_channels()

The one added function that is provided is an initialization of the virtual channel. This creates

a random channel matrix , with the model that the physical channel between

terminal and MIMO array element is a simple multiplication in the frequency domain with

 .

Massive MIMO

Parallel data transmission 12/12/2015

Communication Systems CDIO

LIPS Technical Report 30

This function also lets the user choose the variance of the AWGN that will be added on each

channel, and such that | | , and a “channel noise

parameter” such that the actual used channels during transactions are

where | | () .

Input:

num_terminals – The number of terminals that will be used.

num_array_elements – The number of MIMO array elements that will be used.

noise_level – The variance of the AWGN that is added to each channel.

min_ampl_scale – The lowest value on amplitude scaling that a channel may have .

max_ampl_scale – The highest value on amplitude scaling that a channel may have .

channel_noise_ampl – The “channel noise parameter” .

6.2.2 Transactions

This subsection will explain how the simulated result of a transaction is calculated.

Let us assume that the transaction is sent from the MIMO array to the terminals. The terminal

channel numbers are , and the array element channel numbers are
 .

The transmitted signals from the array are , where is the signal

that should be transmitted on array element , .

To simulate the clicking sound that appears at the start of a transmission, a small “burst”

signal is created. The length of this signal is first decided to be , which is uniformly

distributed between and . The burst is then created as WGN with a variance that

decreases linearly from being at the start of the burst, to being at the end of it. This

“burst” signal is then added to the beginning of all . This behavior of the burst is entirely

modeled after the appearance of several tests on the actual hardware.

To simulate that there is a non-deterministic delay between the start of the „recording‟

(sampling on A/D card) and the start of the transmission, a delay is calculated. This delay

is uniformly distributed to represent a time delay between and . The resulting delayed

signals are then .

The received signal on terminal is then:

 ∑ (
 ())

 (10)

Observe that the multiplication in equation 10 really is a multiplication of
 with one side

of the FFT spectrum, and
 with the other side of it, to ensure that this corresponds to

a real filter so that it gives a real-valued output.

Massive MIMO

Parallel data transmission 12/12/2015

Communication Systems CDIO

LIPS Technical Report 31

The last thing that is done is to resample the received signals to correspond to the used

sampling frequency for the receiving side.

6.3 Sequence generators

There are two different kinds of sequence generators implemented in this project. The first

one is a bit stream generator, which is capable of creating random bit streams used as data.

The second one is capable of generating orthogonal preambles used in downlink data

transmission. These functions are presented in more detail in sections 6.3.1 and 6.3.2.

6.3.1 bit_stream_generator()

This function produces a matrix with bit streams as rows. Each element of the matrix is either

0 or 1, and is created through a Bernoulli process with equal probability of each value.

Input:

Nstreams – The number of bit streams to generate (the amount of rows in the matrix).

Nbits – The number of bits in each stream (the amount of columns in the matrix).

Output:

bits – The matrix containing the streams.

6.3.2 preamble_generator()

This function produces a matrix of orthogonal rows, which should be used as preambles.

There are two variants of the generating algorithm; „BPSK‟ where each row consist of only

the numbers and , and „QPSK‟ where each row consists of only the numbers and

 .

The algorithm uses the matrices that are generated from the following formulas:

 (11)

 (

) (12)

 (

) (13)

 (

 (

)

 (

)

 (

)

 (

)

 (

)

) (14)

Equation 14 simply means that

 is

 but with a cyclic shift of three of the columns

in the middle region of it (if this can be done).

Massive MIMO

Parallel data transmission 12/12/2015

Communication Systems CDIO

LIPS Technical Report 32

The updating procedures (12) and (13) ensures that all rows of

 are orthogonal, and

since

 only has some columns switched, the rows of this matrix will also be orthogonal.

The reason behind the switching of columns is to prevent rows having a repeating pattern.

E.g. without this there would in the case of BPSK exist rows such as

and . These repeating patterns are not good for

delay estimations since this makes a delayed and phase-shifted version of the preamble

resemble the original very much.

Let the wanted length of the preambles be ∑

 . Then each row

of is a concatenation of one random row of each

 such that , and each row of

 may only appear in one row of . For preambles of type „BPSK‟ there is one more

requirement; the first row of
 may never appear in . This is to prevent rows of to be

constant, which also is bad for delay estimation for the same reasons as above.

Each row of is as a final step multiplied with a random choice from the allowed numbers,

i.e. for „BPSK‟ and for „QPSK‟.

The above described process imposes a restriction on the maximum number of preambles

 for a certain choice of :

 QPSK:

 BPSK:

Input:

nPreambles – The number of wanted preambles (the amount of rows in .

nSymbols – The length of each preamble (the amount of columns in).

type – „BPSK‟ or „QPSK‟ algorithm. This input is optional; „BPSK‟ will be used as default.

Output:

preambles – The matrix containing the orthogonal preambles.

6.4 Other functions

In this chapter all functions that haven‟t been described yet are presented. These are not

considered part of any sub-system, but are used as utilities in the final system.

6.4.1 initIO()

Initializes and returns an IOobject or IOobject_sim depending on the input. The IOobject_sim

gets initialized with some fixed values. This function is a nice abstraction of the IO, the user

can act completely independent of the type of IO.

Massive MIMO

Parallel data transmission 12/12/2015

Communication Systems CDIO

LIPS Technical Report 33

Input:

terminals – The channel numbers of the terminals.

arrayTransceivers – The channel numbers of the MIMO transceivers.

fs – The sampling frequency to use on microphones.

useVirtualChannel – Boolean, should a virtual channel be used instead of real?

virtualNoiseVariance – The variance of the AWGN of the IOobject_sim (if used).

Output:

io – The IOobject/IOobject_sim, initialized and ready for transactions.

6.4.2 checkForNonASCII()

Checks if there is a non US-ASCII character in a string.

Input:

str – A string of characters

Output:

result – True if the string contains a non US-ASCII character, false otherwise.

6.4.3 stringToBits()

Encodes a string of US-ASCII characters into a one-dimensional matrix of binary numbers.

Input:

string – A string containing US-ASCII characters, non-printable characters at the end will be

removed.

Output:

bits – A one-dimensional matrix containing the binary encoded characters.

Massive MIMO

Parallel data transmission 12/12/2015

Communication Systems CDIO

LIPS Technical Report 34

6.4.4 createMessages()

Creates two binary messages from two strings containing US-ASCII characters. This function

calls the stringToBits() function.

Input:

str1 – A string containing only US-ASCII characters where at least one character must be a

printable character

str2 – A string containing only US-ASCII characters where at least one character must be a

printable character

Output:

A matrix with two rows where the first row is a binary representation of str1 and the second

row is a binary representation of str2. The shorter string will be zero-padded if the strings are

different in length.

6.4.5 bitsToString()

Decodes a matrix with binary numbers into a string containing US-ASCII characters.

Input:

bits – A one-dimensional matrix containing binary representation of US-ASCII characters. All

characters must be represented by 7 binary numbers, thus must the length of the input matrix

be divisible by 7.

Output:

string – A string containing the decoded US-ASCII characters.

6.4.6 readMessages()

Recreates two strings of US-ASCII characters from a matrix containing binary numbers. This

function calls the bitsToString() function.

Input:

bits – A matrix with two rows containing binary representations of US-ASCII characters. All

characters must be represented by 7 binary numbers, thus must the length of the input matrix

be divisible by 7.

Output:

str1 – A string of US-ASCII characters

str2 – A string of US-ASCII characters

Massive MIMO

Parallel data transmission 12/12/2015

Communication Systems CDIO

LIPS Technical Report 35

6.4.7 multiPlot()

Plots every row of a data matrix in separate subplots.

Input:

xData – A one dimensional matrix containing the data that is to be plotted on the x-axis.

yData – A matrix with an arbitrary number of rows containing the data that is to be plotted on

the y-axis.

terminals – A vector that specifies which transceivers are as terminals.

xMax – The maximum value of the x-axis

figureTitle – A title that specifies what kind of plots are presented in the figure (optional).

xLabel – Label of the x-axis (optional).

yLabel – Label of the y-axis (optional).

6.4.8 multiStem()

Stem plots every row of a data matrix in separate subplots.

Input:

data – A matrix with an arbitrary number of rows containing the data that is to be plotted on

the y-axis.

terminals – A vector that specifies which transceivers are as terminals.

figureTitle – A title that specifies what kind of plots are presented in the figure (optional).

xLabel – Label of the x-axis (optional).

yLabel – Label of the y-axis (optional).

6.4.9 constellationPlot()

Scatter plots symbols for each terminal in separate subplots. As well as the constellation

points as a reference.

Input:

symbols – Matrix where each row contains symbols from different terminals.

constellation – A vector containing all the constellation points for the symbol mapping.

Massive MIMO

Parallel data transmission 12/12/2015

Communication Systems CDIO

LIPS Technical Report 36

7 RESULTS

This section depicts the results from measurements and tests of the system. The measurements

of section 7.1 were made using the hardware in a laboratory environment over a real channel.

7.1 System Performance

This section presents the performance of the final system.

7.1.1 Pilot test

To get a hint of the optimal number of pilot symbols per terminal several measurements were

made keeping all parameters except the number of pilot symbols fixed according to table 3.

The terminals were placed in a line approximately 1 m apart and 1 m from the array. The

array was placed in a line with approximately 2 dm between each element. The result of the

test is shown in table 4.

Table 3: Pilot test input data

Number of information bits 10000

Symbol rate (symbols/sec) 192

Carrier frequency 800

Number of pilot symbols per terminal {5,10,20,40}

Encoding Algorithm None

Interleaving None

Interleaving depth -

Modulator Type QPSK

Precoder Type ZF

Number of terminals 2

Number of array elements 14

Number of synchronization symbols 16

Table 4: Pilot test result

 Test 1 Test 2 Test 3 Test 4

Number of pilot symbols 5 10 20 40

Information bit rate 299 299 277 259

Information BER 0.0483 0.0282 0.02995 0.0702

Massive MIMO

Parallel data transmission 12/12/2015

Communication Systems CDIO

LIPS Technical Report 37

7.1.2 Synchronization test

To get a hint of the optimal number of synchronization symbols several measurements were

made keeping all parameters except the number of synchronization symbols fixed according

to table 5. The terminals and array were placed in the same way as in the pilot test. The result

of the test is shown in table 6.

Table 5: Synchronization test input data

Number of information bits 10000

Symbol rate (symbols/sec) 192

Carrier frequency 800

Number of pilot symbols per terminal 10

Encoding Algorithm None

Interleaving None

Interleaving depth -

Modulator Type QPSK

Precoder Type ZF

Number of terminals 2

Number of array elements 14

Number of synchronization symbols {16,32,64}

Table 6: Pilot test result

 Test 1 Test 2 Test 3

Number of synchronization symbols 16 32 64

Information bit rate 299 283 259

Information BER 0.03005 0.03085 0.2007

7.1.3 Precoder test

To compare the performance of the precoders several measurements were made keeping all

parameters except the modulator type and the position of the terminal and array fixed

according to table 7. The different terminal and array positions tested are explained in table 8.

In table 9 and 10 the resulting BER for BPSK and QPSK is given, respectively. The rest of

the measurements are done using position 4.

Massive MIMO

Parallel data transmission 12/12/2015

Communication Systems CDIO

LIPS Technical Report 38

Table 7: Precoder test input data

Number of information bits 4000

Symbol rate (symbols/sec) 192

Carrier frequency 800

Number of pilot symbols per terminal 10

Encoding Algorithm None

Interleaving None

Interleaving depth -

Modulator Type {BPSK,QPSK}

Precoder Type {MRT,ZF}

Number of terminals 2

Number of array elements 14

Table 8: Positions of terminals and array

Position 1 Lined terminals approx. 1 m apart, approx. 1 m from array. Lined array approx. 2

dm between each element.

Position 2 One terminal approx. 0.75 m from array and one terminal approx. 1.25 m from

array. Approx. 1 m between terminals. Lined array approx. 2 dm between each

element.

Position 3 One terminal approx. 0.75 m from array and one terminal approx. 1.25 m from

array. Approx. 1 m between terminals. Lined array approx. 1 dm between each

element.

Position 4 Lined terminals approx. 1 m apart, approx. 1 m from array. Lined array approx. 1

dm between each element.

Table 9: Precoder results using BPSK

 MRT ZF

Position 1 0.0005 0.01025

Position 2 0.005 0.003

Position 3 0.00375 0.018

Position 4 0 0

Massive MIMO

Parallel data transmission 12/12/2015

Communication Systems CDIO

LIPS Technical Report 39

Table 10: Precoder results using QPSK

 MRT ZF

Position 1 0.039875 0.019125

Position 2 0.038875 0.0545

Position 3 0.059875 0.034125

Position 4 0.008625 0.005625

7.1.4 Modulator test

To compare the performance of the modulators several measurements were made keeping all

parameters except the modulator type, symbol rate and number of information bits fixed

according to table 11. The number of information bits was altered to have an approximately

equal transmission time for each test. The resulting information bit rate and BER is shown in

figure 7.

Table 11: Modulator test input data

Number of information bits {3000,6000,9000,12000,15000}

Symbol rate (symbols/sec) 32-480

Carrier frequency 1200

Number of pilot symbols per terminal 10

Encoding Algorithm None

Interleaving None

Interleaving depth -

Modulator Type {BPSK,QPSK,8PSK}

Precoder Type ZF

Number of terminals 2

Number of array elements 14

Massive MIMO

Parallel data transmission 12/12/2015

Communication Systems CDIO

LIPS Technical Report 40

Figure 7: Bit rate and BER of different modulators

7.1.5 Channel coder test

To compare the performance of the channel coders several measurements were made keeping

all input parameters except the encoding algorithm, interleaving, symbol rate and number of

information bits fixed according to table 12. The number of information bits was altered to

have an approximately equal transmission time for each test. The resulting information bit

rate and BER is shown in figure 8. The information bit rate and BER of the channel coders

that performed better than without channel coding is shown in figure 9.

Massive MIMO

Parallel data transmission 12/12/2015

Communication Systems CDIO

LIPS Technical Report 41

Table 12: Channel coder test input data

Number of information

bits

{3000,6000,9000,12000,15000}

Symbol rate

(symbols/sec)

48-432

Carrier frequency 1200

Number of pilot symbols

per terminal

10

Encoding Algorithm {No code, Block code (7,4), Block code (15,11), Convolutional

1/2, Convolutional 2/3, Turbo code}

Interleaving {Yes, No}

Interleaving depth 10

Modulator Type QPSK

Precoder Type ZF

Number of terminals 2

Number of array

elements

14

Figure 8: Resulting information bit rate and BER of channel coder test

Massive MIMO

Parallel data transmission 12/12/2015

Communication Systems CDIO

LIPS Technical Report 42

Figure 9: Resulting information bit rate and BER of the best performance in channel coder test

7.1.6 Several terminals

A test was performed to measure the system performance when expanding the number of

terminals. All input parameters were kept fixed except the number of information bits, symbol

rate, number of terminals and the positioning of the terminals according to table 13. The

number of information bits was altered to have an approximately equal transmission time for

each test. The position of the array and terminals was according to position 4 in table 8 except

of the spacing between the terminals. When using 3 terminals the spacing between them were

approximately 0.75 m and when using 4 terminals the spacing between them were

approximately 0.5 m. The resulting information bit rate and BER is shown in figure 10.

Table 13: Several terminals input data

Number of information bits {3000,6000,9000}

Symbol rate (symbols/sec) {144,288,432}

Carrier frequency 1200

Number of pilot symbols per terminal 10

Encoding Algorithm Turbo code

Interleaving Yes

Interleaving depth 10

Modulator Type QPSK

Precoder Type ZF

Number of terminals {3,4}

Number of array elements 12

Massive MIMO

Parallel data transmission 12/12/2015

Communication Systems CDIO

LIPS Technical Report 43

Figure 10: Resulting information bit rate and BER using 3 and 4 terminals

8 PROBLEMS AND LIMITATIONS

This chapter will present the limitations of the final product, and the problems that

unfortunately exist.

8.1 Hardware

The big problem with the hardware was that all L/M units have quite different characteristics.

Both the loudspeakers and the microphones have different sensitivities. As described in the IO

HAL section, an attempt at mitigating this is implemented, where a constant scaling is used on

each channel for loudspeakers and microphones. However, it seems as though the sensitivity

is frequency dependent, and therefore the scaling might be off. Another thing that was noted

when measurements on the characteristics were conducted was that the results wasn‟t very

consistent. Either way it was decided to keep using the constant scaling, but a better solution

would probably be to make even better measurements that incorporate the frequency

dependency.

A smaller problem with the microphones is that the slave devices are quite hollow, such that

sound might resonate inside of them, adding noise to the transmissions.

A third problem is with the A/D card, which sometimes malfunctions with the message

“Sample Clock Error”. When this happens the current A/D conversion is stopped, which for

the system means that the sound transmission is cut off. The system will keep running and

Massive MIMO

Parallel data transmission 12/12/2015

Communication Systems CDIO

LIPS Technical Report 44

start a new transmission in the next frame, but because no signal was sent for some amount of

time, a large number of bit errors are to be expected. The project has not tried to implement

retransmission if this situation happens, and has not been able to find any information about

how to avoid this problem.

8.2 Software

The software system that was created is mostly designed with the aim to have as few

limitations as possible. None of the sub-systems or the IO HAL restricts the number of

devices used as terminals and as MIMO array (and they don‟t assume that the total is 16). The

massive_MIMO_transmission script is actually functional for a configurable number of

terminals and array elements with very few restrictions. The limitation on the number of

terminals would be the point where the pilot signals needs to be longer than 2 seconds, where

the A/D card‟s memory might not be sufficient.

However, the GUI program imposes some extra restrictions on the input parameters to avoid

strange situations. These restrictions are described in the section about the GUI.

The absolute biggest software problem is the library that is distributed by Contec (the A/D

and D/A card provider), which makes it possible to use the Matlab Data Acquisition Toolbox

to interact with the A/D and D/A cards. This library is unfortunately only supporting 32 bit

systems, while the computer used in the project is running 64 bit. This causes the computer to

sometimes crash in a Blue Screen Of Death (BSOD). This problem was already known before

the start of the project and therefore the design of the IOobject supports a change of

implementation. The idea was to create a driver wrapper in C that could be called from

Matlab and completely avoid using the Data Acquisition Toolbox. Since the BSOD problem

occurs once every 3-6 hours on average, and since it would require a lot of time, this was

never implemented. It should however be considered in future projects that use the same

hardware.

9 CONCLUSIONS

This chapter presents the conclusions that can be drawn about the system.

9.1 System Performance

These are conclusions drawn from the measurement results of the system performance.

Because of sampling clock errors and blue screens all testing needed to be supervised and

couldn‟t be automated. A transmission takes time and the project has limited resources.

Therefore we had to limit the amount of bits sent and number of tests done. The statistical

results should therefore be seen as a weak estimate of the system performance. For a more

accurate result and backing of conclusions a larger data set should be used.

9.1.1 Bandwidth

The system performance is limited by the bandwidth of the loudspeaker. Too low and too

high carrier frequency results in poor system performance. From the results of informal

testing we recommend keeping the carrier frequency between 500 and 1200 to get the

best system performance.

Massive MIMO

Parallel data transmission 12/12/2015

Communication Systems CDIO

LIPS Technical Report 45

9.1.2 Pilots

The pilot test showed that using 10 pilot symbols gave the highest bit rate together with the

lowest BER and therefore the best system performance. Therefore the rest of the testing was

performed using 10 pilot symbols per terminal.

9.1.3 Synchronization

The synchronization test showed that using 16 synchronization symbols gave the highest bit

rate together with the lowest BER and therefore the best system performance. The number of

synchronization symbols used was therefore hardcoded to be 16.

9.1.4 Precoder

The precoder test showed that position 4 gives the best system performance. MRT seems to

perform best using BPSK and ZF seems to perform best using QPSK. More informal tests

showed that MRT seems to be more dependent of the positioning of the terminals and the

array. This is reasonable because MRT doesn‟t account for reducing the co-channel

interference, in contrast to ZF. This is the reason for ZF being used in most of the other tests,

to minimize the risk of co-channel interference.

9.1.5 Modulator

The modulator test shows that 8PSK performs worse than BPSK and QPSK. For lower bit

rates BPSK performs best. Although when using higher bit rate QPSK performs better than

BPSK. This is probably due to the bandwidth limitations of the loudspeaker. BPSK requires

higher bandwidth than QPSK and therefore exceeds the bandwidth of the system at a certain

rate. Another reason for QPSK performing better at high rates could be limitations of the

sampling frequency. QPSK uses twice the amount of samples per symbols compared to

BPSK. To utilize the bandwidth QPSK was used in most of the other tests.

9.1.6 Channel coder

It is hard to tell which channel code performs best. The bandwidth limitations of the system

becomes even more of a problem when using channel coding, because the symbol rate needs

to be increased to match the information bit rate of an uncoded transmission. The turbo code,

using the lowest code rate of 1/3, performs best but can only reach information bit rates of

approximately 225 bits/s before exceeding bandwidth. The same problem occurs using the

convolutional code of rate 1/2 when reaching an information bit rate of about 300 bits/s. For

higher bit rates the block code (7,4) and interleaved convolutional code of rate 2/3 performs

best. The block code (15,11) and convolutional code of rate 2/3 without interleaving

performed worst and made no obvious improvements of the system performance. The use of

interleaving seems to have little effect on the system performance when combined with block

code. However, interleaving seems to improve the system performance when combined with

convolutional coding.

9.1.7 More terminals

When using 3 or 4 terminals the number of array elements can only be a maximum of 12,

because of hardware limitations. Another hardware limitation is the short length of the cables

connected to the terminals forcing the terminals to share a limited space in the laboratory

environment and therefore decreases the maximum space between the terminals. These

limitations make the beamforming less accurate. However, the measurements show that using

Massive MIMO

Parallel data transmission 12/12/2015

Communication Systems CDIO

LIPS Technical Report 46

3 terminals works great together with turbo coding. When using 4 terminals some errors are

introduced.

Massive MIMO

Parallel data transmission 12/12/2015

Communication Systems CDIO

LIPS Technical Report 47

10 REFERENCES

Published references

Svensson, T. & Krysander, C. (2011). Projektmodellen Lips, Upplaga 1:1, Studentlitteratur AB, Lund,

ISBN 978-91-44-07525-9

Electronic references

Sörman, S. (2014). User Manual Version 1.0 (PDF) Available:

<http://www.isy.liu.se/edu/projekt/kommunikationssystem/2015/pdt/documents/User%20Manual%20

v1.0.pdf >

Ngo, H, Q. (2015). Massive MIMO: Fundamentals and System Designs (PDF) Available: <

http://liu.diva-portal.org/smash/get/diva2:772015/FULLTEXT01.pdf>

Massive MIMO

Parallel data transmission 12/12/2015

Communication Systems CDIO

LIPS Technical Report 48

11 APPENDIX

Below follows a list of files and folders that should exist in the PDT folder for the system to

work.

bit_stream_generator.m
bitsToString.m
checkForNonASCII.m
constellationPlot.m
createMessages.m
massive_MIMO_transmission.m
multiPlot.m
multiStem.m
NO_GUI_transmission.m
preamble_generator.m
readMessages.m
stringToBits.m

GUI/
GUI.fig
GUI.m

Modulator/
detector_8psk.m
detector_bpsk.m
detector_qpsk.m
detector.m
distances.m
downlink_demodulator.m
mapper.m
MRT.m
symbol_mapper_8psk.m
symbol_mapper_bpsk.m
symbol_mapper_qpsk.m
upconverter.m
uplink_demodulator.m
ZF.m

Channel coding/

Blockcode_15_11.m
Blockcode_7_4.m
channelCode.m
channelDecode.m
Convo_1_2.m
Convo_2_3.m
DeBlockcode_15_11.m
DeBlockcode_7_4.m
DeInterBlock.m
Deconvo_1_2.m
Deconvo_2_3.m
InterBlock.m
TurboDecoder.m
TurboEncoder.m

Massive MIMO

Parallel data transmission 12/12/2015

Communication Systems CDIO

LIPS Technical Report 49

Channel_estimator/
channel_estimator.m
pilot_generator.m

IO/

IOobject.m
IOobject_sim.m
initIO.m

